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part to an increased lifetime of the radical pair cage in 
the more viscous solvent, which increases the proba­
bility for the electron transfer process. Similarly the 
failure of most bromides to exhibit significant cationic 
behavior is perhaps due to a shorter lifetime of the 
radical pair cage. The increased cationic behavior 
exhibited by bridgehead bromides7 is then attributable 
to partial shielding by the cyclic structure, a sort of 
internal viscosity effect. 

Interesting behavior has also been observed for 1-
bromo- and 1-iodooctane. On irradiation in methanol 
the bromide affords only rc-octane (83%) whereas the 
iodo analog gives rise predominantly to a mixture of 
1- (56%), 2- (4%), and 3-octene (2%), along with some 
«-octane (38 %). In ether solution the bromide simi­
larly affords only «-octane (76%), whereas the iodide 
gives principally 1-octene (70%), accompanied by a 
mixture of 2- and 3-octene (9%) and some «-octane 
(18%). The predominance of elimination, accom­
panied by some prior rearrangement to internal posi­
tions, in preference to nucleophilic trapping by solvent 
is characteristic behavior for "free" cations formed via 
a high energy process with little or no solvent participa­
tion.8 By contrast treatment of the iodide with meth-
anolic silver perchlorate affords exclusively methyl 
1-octyl ether. 

Further work is in progress to explore the synthetic 
potential, as well as mechanistic details, of the versatile 
photochemical behavior of alkyl halides. 
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Potassium Bisboranemethylselenide(l—) and 
yu-Methylselenodiborane 

Sir: 
We wish to report the synthesis of a bisborane adduct 

of selenium and its conversion to the first example of 
a selenium substituted borane. A xylene slurry of 
KSeCH3 at 25° reacts with a stoichiometric amount of 
diborane over a period of 3 hr in agreement with eq 1. 

KSeCH3 + B2H6 — > KCH3Se(BH3)Z (1) 

The colorless unsolvated solid product may be isolated 
by evaporation. Anal. Calcd (mmol/g): B(OH)3, 
12.5; H2(hydrolytic), 37.4. Found: B(OH)3,12.0; H2 

(hydrolytic), 35.0. The KCH3Se(BH3)2 is readily solu­
ble in tetrahydrofuran and is thermally stable at room 
temperature for a few hours. Boron-11 nmr shows a 

quartet, 22.8 ppm (relative to (C2Hs)2OBF3), / B H = 
100 Hz; infrared shows BH stretching at 2390, 2325, 
and 2290 cm-1. 

Treatment of a cumene slurry of KCH3Se(BH3)2 

with 0.5 mol of iodine at 25° produces ,U-CH3SeB2H5 

in ca. 10% yield according to eq 2. The liquid product 

KCH3Se(BH3)2 + V2I2 — > M-CH3SeB2H5 + VaH2 + KI (2) 

slowly passes a trap at —45° and stops at —78°. The 
bridge substituted structure is confirmed by boron-11 
nmr which shows a triplet of doublets at 19.0 ppm with 
/BH = 140 Hz and /BHB = 38 Hz. Proton nmr shows 
SeCH3 singlet r 8.91, 11BH 1:1:1:1 quartet T 7.94, 
/BH = 140 Hz, and bridge 11BH11B r 11.33. The gas 
phase infrared spectrum shows terminal BH stretching 
bands at 2570 and 2485 cm-1 and bridge BHB stretch­
ing absorptions at 1820 and 1735 cm -1 . The mass 
spectrum is complex owing to the presence of six sele­
nium isotopes in addition to boron-10 and -11, but 
the expected high mass peak at m/e 124 corresponding 
to 11B2

12C1H8
82Se+ is readily observable; the general 

envelope of peaks is consistent with the proposed struc­
ture. Anal. Calcd (mmol/g): B(OH)3, 16.6; H2 

(hydrolytic), 41.5; CH3SeH, 8.30. Found: B(OH)3, 
17.4; H2 (hydrolytic), 42.3; CH3SeH, 7.65. The 
thermal stability of /U-CH3SeB2H5 is poor; typically 
a sample decomposes within 10 min at 25° according 
to eq 3. In toluene reaction 3 is easily reversible at 

M-CH3SeB2H5 ^ = i : -(CH3SeBH2)„ + V2B2H6 (3) 

25° so that under these conditions ^u-CH3SeB2H5 is 
stable indefinitely in the presence of excess diborane, 
indicating that (CH3SeBH2),, is considerably more 
labile than its sulfur analog (CH3SBH2)„.1 

The /U-CH3SeB2H5 molecule should possess con­
siderable structural strain owing to the large selenium 
atom. Assuming a B-Se distance of 2.02 A (sum of 
covalent radii2) and a B- • B distance of 1.92 A (from 
/u-(CH3)2NB2H5

3) gives a highly acute B-Se-B angle of 
57°. Relieving this strain by opening the angle should 
alternatively result in an unusually stretched B-H-B 
bridge. 

We are currently investigating the chemistry of ,u-
CH3SeB2H5 and related compounds more fully and will 
report our findings in greater detail at a later date. 
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